论文标题

具有长长和短期组件的双重乘法误差模型

Doubly Multiplicative Error Models with Long- and Short-run Components

论文作者

Amendola, Alessandra, Candila, Vincenzo, Cipollini, Fabrizio, Gallo, Giampiero M.

论文摘要

我们建议模型的双重乘法误差类别(DMEM)用于建模和预测实现的波动率,该类别分别结合了两个组件,分别适合数据中低频特征。我们得出了最大可能性和矩估计器的广义方法的理论特性。然后提出了两个这样的模型,即组件-MEM,该模型使用两个组件的每日数据和MEM-MIDA,该数据利用了混合数据采样(MIDAS)的逻辑。经验应用涉及标准普尔500指数,纳斯达克,FTSE 100和Hang Seng Indices:无论市场如何,DMEM的跑赢大盘和其他相关的Garch型模型均表现不错。

We suggest the Doubly Multiplicative Error class of models (DMEM) for modeling and forecasting realized volatility, which combines two components accommodating low-, respectively, high-frequency features in the data. We derive the theoretical properties of the Maximum Likelihood and Generalized Method of Moments estimators. Two such models are then proposed, the Component-MEM, which uses daily data for both components, and the MEM-MIDAS, which exploits the logic of MIxed-DAta Sampling (MIDAS). The empirical application involves the S&P 500, NASDAQ, FTSE 100 and Hang Seng indices: irrespective of the market, both DMEM's outperform the HAR and other relevant GARCH-type models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源