论文标题
使用原子力显微镜数据深度学习分析来量化蛋白质自组织的动力学
Quantifying the dynamics of protein self-organization using deep learning analysis of atomic force microscopy data
论文作者
论文摘要
使用高速原子力显微镜可视化蛋白质在无机表面上自组装和所得几何模式的动力学。经典的宏观描述符(例如2D快速傅立叶变换(FFT),相关和配对分布函数)的时间动力学通过无监督的线性Unmixing进行了探索,证明存在静态有序和动态无序相位的存在并确定其时间动力学。开发了基于深度学习(DL)的工作流程,以分析按粒子水平粒子上的详细粒子动力学。除了宏观描述符之外,我们还利用局部粒子几何形状和构型的知识来探索局部几何形状的演变,并重建粒子之间的相互作用势。最后,我们使用基于机器学习的功能提取来定义无物理约束的粒子社区。这种方法允许将可能的粒子行为类别分开,识别相关的过渡概率,并进一步扩展此分析以识别慢速模式和相关的配置,从而可以对系统的时间动力学进行系统的探索和预测建模。总体而言,这项工作建立了基于DL的工作流程,以分析复杂系统中观察数据中的自组织过程,并提供了对基本机制的见解。
Dynamics of protein self-assembly on the inorganic surface and the resultant geometric patterns are visualized using high-speed atomic force microscopy. The time dynamics of the classical macroscopic descriptors such as 2D Fast Fourier Transforms (FFT), correlation and pair distribution function are explored using the unsupervised linear unmixing, demonstrating the presence of static ordered and dynamic disordered phases and establishing their time dynamics. The deep learning (DL)-based workflow is developed to analyze detailed particle dynamics on the particle-by-particle level. Beyond the macroscopic descriptors, we utilize the knowledge of local particle geometries and configurations to explore the evolution of local geometries and reconstruct the interaction potential between the particles. Finally, we use the machine learning-based feature extraction to define particle neighborhood free of physics constraints. This approach allowed separating the possible classes of particle behavior, identify the associated transition probabilities, and further extend this analysis to identify slow modes and associated configurations, allowing for systematic exploration and predictive modeling of the time dynamics of the system. Overall, this work establishes the DL based workflow for the analysis of the self-organization processes in complex systems from observational data and provides insight into the fundamental mechanisms.