论文标题
Liouvillian耗散线性玻色子系统中任何顺序的特殊点:连贯的功能和在$ {\ cal pt} $和anti-$ {\ cal pt} $ symmetries之间切换
Liouvillian exceptional points of any order in dissipative linear bosonic systems: Coherence functions and switching between ${\cal PT}$ and anti-${\cal PT}$ symmetries
论文作者
论文摘要
通常,在调查开放式马尔可夫骨骼系统的特殊点(EPS)时,人们处理非热汉密尔顿(NHH)的光谱退化,仅在半经典状态下才能正确描述系统动力学。最近提出的一个量子liouvillian框架使量子状态中的量子跳跃的效果(在NHH形式中被忽略),可以完全确定量子制度中此类系统及其EPS的动力学特性(称为Liouvillian EPS或LEPS)。此外,NHH的对称和特征频谱成为更大的liouvillian eigenspace的一部分。因此,NHH的EPS形成了LEP的子空间。在这里,我们表明,一旦一个耗散线性骨骼系统的NHH表现出一定有限顺序$ n $的EP,这立即暗示相应的LEP可以变成任何高阶$ M \ geq n $,在无限希尔伯特空间中定义。最重要的是,这些高阶LEP可以通过稳态处的相干和光谱函数来识别。相干功能可以提供一个方便的工具,以探测高阶LEP附近外部扰动的极端系统敏感性。例如,我们研究具有不连贯模式耦合的双峰腔的线性骨骼系统,以揭示其高阶LEP。特别是,分别通过一阶和二阶相干函数分别为第二和三阶。因此,这些LEP可以通过功率和强度 - 透射光谱中的平方和立方洛伦兹光谱线形成揭示。此外,我们证明了这些EPS也可以与自发的平等时间($ {\ cal pt} $)和抗 - $ {\ cal pt} $ - 对称性破坏所研究的系统中的对称性。
Usually, when investigating exceptional points (EPs) of an open Markovian bosonic system, one deals with spectral degeneracies of a non-Hermitian Hamiltonian (NHH), which can correctly describe the system dynamics only in the semiclassical regime. A recently proposed quantum Liouvillian framework enables to completely determine the dynamical properties of such systems and their EPs (referred to as Liouvillian EPs, or LEPs) in the quantum regime by taking into account the effects of quantum jumps, which are ignored in the NHH formalism. Moreover, the symmetry and eigenfrequency spectrum of the NHH become a part of much larger Liouvillian eigenspace. As such, the EPs of an NHH form a subspace of the LEPs. Here we show that once an NHH of a dissipative linear bosonic system exhibits an EP of a certain finite order $n$, it immediately implies that the corresponding LEP can become of any higher order $m\geq n$, defined in the infinite Hilbert space. Most importantly, these higher-order LEPs can be identified by the coherence and spectral functions at the steady state. The coherence functions can offer a convenient tool to probe extreme system sensitivity to external perturbations in the vicinity of higher-order LEPs. As an example, we study a linear bosonic system of a bimodal cavity with incoherent mode coupling to reveal its higher-order LEPs; particularly, of second and third order via first- and second-order coherence functions, respectively. Accordingly, these LEPs can be additionally revealed by squared and cubic Lorentzian spectral lineshapes in the power and intensity-fluctuation spectra. Moreover, we demonstrate that these EPs can also be associated with spontaneous parity-time (${\cal PT}$) and anti-${\cal PT}$-symmetry breaking in the system studied.