论文标题

健康指标预测用于改善剩余使用寿命估计

Health Indicator Forecasting for Improving Remaining Useful Life Estimation

论文作者

Wang, Qiyao, Farahat, Ahmed, Gupta, Chetan, Wang, Haiyan

论文摘要

预后学关注的是预测设备的未来健康和任何潜在的故障。随着物联网(IoT)的进步,数据驱动的方法用于利用机器学习模型的力量的预测方法变得越来越流行。数据驱动的方法最重要的类别之一依赖于预定义的或学到的健康指标来表征设备状况,直到当前的时间,并推断了将来可能如何发展的设备状况。在这些方法中,使用部分观察到的测量值(即,在初始期间内的健康指标值)构建健康指标曲线的健康指标预测起关键作用。现有的健康指标预测算法,例如功能性经验贝叶斯方法,基于回归的配方,基于最近邻居的天真场景匹配,具有一定的限制。在本文中,我们提出了一种用于健康指标预测的新的“生成 +方案匹配”算法。拟议方法背后的关键思想是,使用连续的高斯工艺首先使用一组运行状态健康指示器曲线,以连续的高斯工艺对基础健康指标曲线进行拟合。然后,提出的方法从学习分布中产生了一组丰富的随机曲线,试图在系统的寿命上获得目标健康状况进化过程的所有可能变化。推断出一件功能设备的健康指标外推被推断为在观察到的时期内具有最高匹配水平的生成曲线。我们的实验结果表明,我们的算法优于其他最新方法。

Prognostics is concerned with predicting the future health of the equipment and any potential failures. With the advances in the Internet of Things (IoT), data-driven approaches for prognostics that leverage the power of machine learning models are gaining popularity. One of the most important categories of data-driven approaches relies on a predefined or learned health indicator to characterize the equipment condition up to the present time and make inference on how it is likely to evolve in the future. In these approaches, health indicator forecasting that constructs the health indicator curve over the lifespan using partially observed measurements (i.e., health indicator values within an initial period) plays a key role. Existing health indicator forecasting algorithms, such as the functional Empirical Bayesian approach, the regression-based formulation, a naive scenario matching based on the nearest neighbor, have certain limitations. In this paper, we propose a new `generative + scenario matching' algorithm for health indicator forecasting. The key idea behind the proposed approach is to first non-parametrically fit the underlying health indicator curve with a continuous Gaussian Process using a sample of run-to-failure health indicator curves. The proposed approach then generates a rich set of random curves from the learned distribution, attempting to obtain all possible variations of the target health condition evolution process over the system's lifespan. The health indicator extrapolation for a piece of functioning equipment is inferred as the generated curve that has the highest matching level within the observed period. Our experimental results show the superiority of our algorithm over the other state-of-the-art methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源