论文标题
groupim:神经群体建议的共同信息最大化框架
GroupIM: A Mutual Information Maximization Framework for Neural Group Recommendation
论文作者
论文摘要
我们研究向短暂群体提出项目建议的问题,该群体组成的用户共同有限或没有历史活动。现有研究针对具有大量活动历史的持久群体,而短暂的群体缺乏历史相互作用。为了克服小组互动稀疏性,我们提出了数据驱动的正则化策略,以利用同一组中用户的偏好协方差,以及用户对每个组的个人偏好的上下文相关性。 我们做出了两个贡献。首先,我们提出了一个推荐的体系结构 - 不合骨框架组,该框架可以集成任意的神经偏好编码器和聚合器作为短暂的组建议。其次,我们通过以下方式将用户组潜在空间正规化以克服群体交互稀疏性:最大化小组和组成员表示之间的相互信息;并通过上下文偏好加权动态优先考虑信息丰富成员的偏好。我们对几个现实世界数据集的实验结果表明,与最先进的组推荐技术相比,绩效改进(31-62%相对NDCG@20)。
We study the problem of making item recommendations to ephemeral groups, which comprise users with limited or no historical activities together. Existing studies target persistent groups with substantial activity history, while ephemeral groups lack historical interactions. To overcome group interaction sparsity, we propose data-driven regularization strategies to exploit both the preference covariance amongst users who are in the same group, as well as the contextual relevance of users' individual preferences to each group. We make two contributions. First, we present a recommender architecture-agnostic framework GroupIM that can integrate arbitrary neural preference encoders and aggregators for ephemeral group recommendation. Second, we regularize the user-group latent space to overcome group interaction sparsity by: maximizing mutual information between representations of groups and group members; and dynamically prioritizing the preferences of highly informative members through contextual preference weighting. Our experimental results on several real-world datasets indicate significant performance improvements (31-62% relative NDCG@20) over state-of-the-art group recommendation techniques.