论文标题

通过双探测器 - 歧视剂方法可靠的水印

Robust watermarking with double detector-discriminator approach

论文作者

Plata, Marcin, Syga, Piotr

论文摘要

在本文中,我们提出了一个新颖的深层框架,用于水印 - 一种将透明信息嵌入到图像中的技术,以允许从(扰动)副本中检索消息的方式,以便可以跟踪版权侵权。对于此技术,即使对其施加了一些数字处理操作,也必须从图像中提取信息。我们的框架在鲁棒性的背景下不仅优于最新方法(例如旋转,调整大小,高斯平滑),而且还针对压缩,尤其是JPEG。对于所有类型的扭曲,我们方法的位精度至少为0.86。我们还达到了JPEG的0.90位准确性,而最近提供的方法最多提供0.83。我们的方法也保留高透明度和容量。此外,我们介绍了我们的双检测器 - 歧视方法 - 一种检测和区分图像是否包含嵌入式消息的方案,这对于现实生活中的水印系统至关重要,并且现在没有使用神经网络研究到现在。这样,我们设计了一个测试公式来验证我们的扩展方法,并将其与常见程序进行了比较。我们还提出了一种在攻击上很容易适用于框架的图像质量和鲁棒性之间平衡的替代方法。

In this paper we present a novel deep framework for a watermarking - a technique of embedding a transparent message into an image in a way that allows retrieving the message from a (perturbed) copy, so that copyright infringement can be tracked. For this technique, it is essential to extract the information from the image even after imposing some digital processing operations on it. Our framework outperforms recent methods in the context of robustness against not only spectrum of attacks (e.g. rotation, resizing, Gaussian smoothing) but also against compression, especially JPEG. The bit accuracy of our method is at least 0.86 for all types of distortions. We also achieved 0.90 bit accuracy for JPEG while recent methods provided at most 0.83. Our method retains high transparency and capacity as well. Moreover, we present our double detector-discriminator approach - a scheme to detect and discriminate if the image contains the embedded message or not, which is crucial for real-life watermarking systems and up to now was not investigated using neural networks. With this, we design a testing formula to validate our extended approach and compared it with a common procedure. We also present an alternative method of balancing between image quality and robustness on attacks which is easily applicable to the framework.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源