论文标题
霍奇退化理论,(ii):消失的协同学和几何应用
Hodge theory of degenerations, (II): vanishing cohomology and geometric applications
论文作者
论文摘要
我们研究了几类孤立的超表面奇异性的加权频谱和消失的共同体,以及它们如何促进平滑的限制混合霍奇结构。应用于KSBA和GIT压缩和镜像对称性的几种类型的奇异性,包括奇数超曲面的节点,$ k $ log-canonical和$ k $ - 理性的奇异性,以及带有calabi-yau尾巴的奇异性。
We study the weighted spectrum and vanishing cohomology for several classes of isolated hypersurface singularities, and how they contribute to the limiting mixed Hodge structure of a smoothing. Applications are given to several types of singularities arising in KSBA and GIT compactifications and mirror symmetry, including nodes on odd-dimensional hypersurfaces, $k$-log-canonical and $k$-rational singularities, and singularities with Calabi-Yau tail.