论文标题
Brauer类别的表示理论I:三角形类别
The representation theory of Brauer categories I: triangular categories
论文作者
论文摘要
这是我们研究Brauer类别及其盟友的一系列论文中的第一篇。我们定义了三角形类别的一般概念,该概念抽象了半神经复合物的三角分解的关键特性,并为其发展了最高的权重理论。我们表明,Brauer类别,分区类别和许多相关图类别都接受了此结构。
This is the first in a series of papers in which we study representations of the Brauer category and its allies. We define a general notion of triangular category that abstracts key properties of the triangular decomposition of a semisimple complex Lie algebra, and develop a highest weight theory for them. We show that the Brauer category, the partition category, and a number of related diagram categories admit this structure.