论文标题
集体光子辅助原子水平的调味
Collective Photon Assisted Dressing of Atomic Levels by the number $N$ of Correlated Atoms
论文作者
论文摘要
光学磁力计,原子钟和原子干涉仪和其他量子计量设备的灵敏度的增强需要引入新的物理过程以改善其目前的成就。原子,旋转或通常,量子系统之间的许多身体集体相关性可能被证明是一种合适的方法。由于这些相关性在散射幅度的强度中引入了干扰项,因此它们可能会增强信号为N相关量子系统的$ n(n-1)$。这些相关性将信号与噪声比提高到$ n^2 $,并有助于量子计量学的更好敏感性。此外,原子相关性可能会提供量子噪声极限,海森堡极限。在当前的通信激发交换中,由光子在两个原子之间的空腔中引起的激发交换是计算出的,并清楚地表现出相关和集体效应。引入了一名新型操作员,该操作员表达了对账户节能进行的光子诱导的激发交换,$ v_ {ij} = \ hat {a}^\dagσ_iσ_j^†\ hat {a} $,$σ_i= \ weft | $ i $ -th原子的运营商和$ \ hat {a}^†,\ hat {a} $是光子创建和歼灭操作员。在这里,$ i $和$ j $的两个原子。该操作员描述了真实或虚拟光子辅助偶极双极相互作用。此外,它可以保留关节EM场和量子系统中激发的总数。提出了实验挑战。
Enhancement of the sensitivities of optical magnetometers, atomic clocks and atom interferometers and other quantum metrology devices requires introducing new physical processes to improve on their present achievements. Many body collective correlations among the atoms, spins or, in general, quantum systems may prove to be a suitable method. As these correlations introduce interference terms in the intensity of the scattering amplitudes, they may enhance the signal as $N(N-1)$ for N correlated quantum systems. These correlations enhance the signal to noise ratio by a factor of $N^2$ and contribute to better sensitivity in quantum metrology. Moreover atomic correlation may provide quantum noise limit, Heisenberg limit. In the present communication excitation exchange induced by photons in a cavity between two atoms is calculated and clearly exhibits correlation and collective effects. A novel operator is introduced that expresses photon-induced excitation exchange that takes in account energy conservation, $V_{ij}=\hat{a}^\dagσ_iσ_j^†\hat{a}$, $σ_i=\left|g\right\rangle_{i}\left\langle e\right|_{i}$ is lowering operator of $i$-th atom, and $\hat{a}^†,\hat{a}$ are photon creation and annihilation operators. Here $i$ and $j$ stand for two atoms. This operator describes real or virtual photon assisted dipole-dipole interaction. Moreover, it conserves the total number of excitations in the joint em field and the quantum system. Experimental challenges are suggested.