论文标题
浮动拓扑阶段
Floating topological phases
论文作者
论文摘要
虽然准二维(分层)材料可能是高度各向异性的,但它们的渐近长距离行为通常反映了物质完全三维相的特性。然而,某些具有新出现的2+1尺寸尺度对称性的拓扑排序的量子相可能在平面耦合上渐近地不透水。我们讨论了这种“浮动拓扑阶段”的稳定性,以及它们通过非本地阶参数的诊断。这样的阶段可以产生分歧比$ρ_ {\ perp}/ρ_{\ parallel} $,即使在绝缘子中,即使在$ρ_{\ perp} $和$ρ_\ pareally $ pareally $ pareally $ $ $ parelece $中,即使在绝缘子中,也可以将其作为$ t \ to $ t \ 0 $。对这种差异的实验观察将构成拓扑(例如自旋液体)相存在的证明。
While quasi-two-dimensional (layered) materials can be highly anisotropic, their asymptotic long-distance behavior generally reflects the properties of a fully three dimensional phase of matter. However, certain topologically ordered quantum phases with an emergent 2+1 dimensional gauge symmetry can be asymptotically impervious to interplane couplings. We discuss the stability of such "floating topological phases", as well as their diagnosis by means of a non-local order parameter. Such a phase can produce a divergent ratio $ρ_{\perp}/ρ_{\parallel}$ of the inter-layer to intra-layer resistivity as $T\to 0$, even in an insulator where both $ρ_{\perp}$ and $ρ_\parallel$ individually diverge. Experimental observation of such a divergence would constitute proof of the existence of a topological (e.g. spin liquid) phase.