论文标题
物理学告知深内核学习
Physics Informed Deep Kernel Learning
论文作者
论文摘要
深内核学习是深度神经网络和非参数功能学习的有希望的结合。但是,作为数据驱动的方法,深内核学习的性能仍然可以受到数据稀缺或不足的限制,尤其是在外推任务中。为了解决这些局限性,我们建议物理学知情的深内核学习(PI-DKL),这些学习利用了由具有潜在来源的微分方程代表的物理知识。具体而言,我们使用高斯过程的后函数样本作为微分方程解的替代物,并构建生成分量以将方程整合到有原则的贝叶斯混合框架中。为了高效有效的推断,我们将关节概率中的潜在变量边缘化,并得出折叠模型证据下限(ELBO),基于我们开发随机模型估计算法。我们的Elbo可以被视为一个不错的,可解释的后正规化目标。在合成数据集和现实世界应用程序上,我们在预测准确性和不确定性量化方面都显示了方法的优势。
Deep kernel learning is a promising combination of deep neural networks and nonparametric function learning. However, as a data driven approach, the performance of deep kernel learning can still be restricted by scarce or insufficient data, especially in extrapolation tasks. To address these limitations, we propose Physics Informed Deep Kernel Learning (PI-DKL) that exploits physics knowledge represented by differential equations with latent sources. Specifically, we use the posterior function sample of the Gaussian process as the surrogate for the solution of the differential equation, and construct a generative component to integrate the equation in a principled Bayesian hybrid framework. For efficient and effective inference, we marginalize out the latent variables in the joint probability and derive a collapsed model evidence lower bound (ELBO), based on which we develop a stochastic model estimation algorithm. Our ELBO can be viewed as a nice, interpretable posterior regularization objective. On synthetic datasets and real-world applications, we show the advantage of our approach in both prediction accuracy and uncertainty quantification.