论文标题

可视化几何序列

Visualize Geometric Series

论文作者

Chu, Hung Viet

论文摘要

我们回顾了Mabry's,Edgar's和The Viewpoints 2000小组的证明,而没有单词几何系列公式。马布里(Mabry)和埃德加(Edgar)证明了 $ \ frac {1} {4} + \ left(\ frac {1} {4} {4} \ right)^2 + \ left(\ frac {1} {1} {4} {4} \ oright) } \ Quad \ frac {4} {9} + \ left(\ frac {4} {9} {9} \ right)^2 + \ left(\ frac {4} {4} {9} {9} \ right)^3 + \ cdots \ cdots \ cdots \ cdots \ cdots \ = \ = \ \ \ \ \ \ \ \ \ \ \ frac {4} {4} {4} {5} {5} {5},$我们表明,他们的证据满足了使它们与众不同的某些要求。然后,我们说明了他们和观点2000小组的证明之间的共同思想。

We review Mabry's, Edgar's, and the Viewpoints 2000 Group's proofs without words for the geometric series formula. Mabry and Edgar proved without words that $$\frac{1}{4} + \left(\frac{1}{4}\right)^2 + \left(\frac{1}{4}\right)^3 + \cdots\ =\ \frac{3}{4}\quad\mbox{ and }\quad\frac{4}{9} + \left(\frac{4}{9}\right)^2 + \left(\frac{4}{9}\right)^3 + \cdots\ =\ \frac{4}{5},$$ respectively. We show that their proofs satisfy certain requirements that make them unique. We then illustrate a common idea between their and the Viewpoints 2000 Group's proofs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源