论文标题

非自主一级双曲线系统的有限时间稳定

Finite Time Stabilization of Nonautonomous First Order Hyperbolic Systems

论文作者

Kmit, Irina, Lyul'ko, Natalya

论文摘要

我们解决了非自主的初始边界价值问题的脱钩线性一维双曲系统,研究有限的时间稳定现象。我们建立了足够和必要的条件,以确保在任何初始$ l^2 $ -DATA的有限时间内解决方案稳定在零。在非自主情况下,我们给出了一个组合标准,指出且仅当反射边界系数的矩阵与有向的无环图相对应时,就会发生稳健稳定。等效的鲁棒代数标准是该图的邻接矩阵是nilpotent的。在自主情况下,我们还提供了一个光谱稳定标准,相对于双曲系统系数的扰动,这是不重做的。

We address nonautonomous initial boundary value problems for decoupled linear first-order one-dimensional hyperbolic systems, investigating the phenomenon of finite time stabilization. We establish sufficient and necessary conditions ensuring that solutions stabilize to zero in a finite time for any initial $L^2$-data. In the nonautonomous case we give a combinatorial criterion stating that the robust stabilization occurs if and only if the matrix of reflection boundary coefficients corresponds to a directed acyclic graph. An equivalent robust algebraic criterion is that the adjacency matrix of this graph is nilpotent. In the autonomous case we also provide a spectral stabilization criterion, which is nonrobust with respect to perturbations of the coefficients of the hyperbolic system.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源