论文标题

用Tsybakov噪音学习半空间

Learning Halfspaces with Tsybakov Noise

论文作者

Diakonikolas, Ilias, Kontonis, Vasilis, Tzamos, Christos, Zarifis, Nikos

论文摘要

我们研究了在Tsybakov噪声存在下半空间的有效PAC可学习性。在Tsybakov噪声模型中,每个标签都被一定的概率独立翻转,这些概率由对手控制。该噪声模型通过允许对一小部分样本的翻转概率任意接近$ 1/2 $,从而显着概括了Massart噪声模型。我们的主要结果是在一个广泛的结构化分布家族中,该问题的第一个非平凡的PAC学习算法 - 满足某些浓度和(抗)抗浓缩特性,包括对数 - concove分布。具体而言,我们给出了一种算法,该算法可相对于真正的半空间实现错误分类错误的$ε$,而准polynomial运行时依赖性为$ 1/\ epsilin $。此问题的唯一前面的上限 - 即使对于日志concave分布的特殊情况,也是$ 1/ε$的双重指数(并通过幼稚的减少到不可知论学习)。我们的方法依赖于一种新颖的计算有效程序来证明候选解决方案是否基于半准编程,是否非常优势。我们将此证书过程用作黑色框,并通过在线凸出优化在半空间的空间中搜索,将其转变为有效的学习算法。

We study the efficient PAC learnability of halfspaces in the presence of Tsybakov noise. In the Tsybakov noise model, each label is independently flipped with some probability which is controlled by an adversary. This noise model significantly generalizes the Massart noise model, by allowing the flipping probabilities to be arbitrarily close to $1/2$ for a fraction of the samples. Our main result is the first non-trivial PAC learning algorithm for this problem under a broad family of structured distributions -- satisfying certain concentration and (anti-)anti-concentration properties -- including log-concave distributions. Specifically, we given an algorithm that achieves misclassification error $ε$ with respect to the true halfspace, with quasi-polynomial runtime dependence in $1/\epsilin$. The only previous upper bound for this problem -- even for the special case of log-concave distributions -- was doubly exponential in $1/ε$ (and follows via the naive reduction to agnostic learning). Our approach relies on a novel computationally efficient procedure to certify whether a candidate solution is near-optimal, based on semi-definite programming. We use this certificate procedure as a black-box and turn it into an efficient learning algorithm by searching over the space of halfspaces via online convex optimization.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源