论文标题

关于半决赛放松的紧密性,以证明对对抗性例子的鲁棒性

On the Tightness of Semidefinite Relaxations for Certifying Robustness to Adversarial Examples

论文作者

Zhang, Richard Y.

论文摘要

神经网络对对抗性实例的鲁棒性可以通过解决凸放松来证明。但是,如果放松松动,则结果证书可能太保守了,实际上是有用的。最近,基于Relu激活函数的半决赛编程(SDP)放松,提出了不太保守的鲁棒性证书。在本文中,我们描述了一种几何技术,该技术确定了该SDP证书是否确切,这意味着它是否提供了最小的对抗扰动的大小,以及达到较低限制的全球最佳扰动。具体而言,我们表明,对于通常的对抗性攻击问题的最小二乘限制,SDP松弛等于一个点在双曲线上的非凸投影。当且仅当点的投影位于双曲线的主要轴上时,所得的SDP证书是准确的。使用这种几何技术,我们证明证书在温和的假设下是在单个隐藏层上精确的,并解释了为什么通常对于几个隐藏的层是保守的。我们通过通用内点方法和自定义的级别2 burer-monteiro算法在实验中确认我们的理论见解。

The robustness of a neural network to adversarial examples can be provably certified by solving a convex relaxation. If the relaxation is loose, however, then the resulting certificate can be too conservative to be practically useful. Recently, a less conservative robustness certificate was proposed, based on a semidefinite programming (SDP) relaxation of the ReLU activation function. In this paper, we describe a geometric technique that determines whether this SDP certificate is exact, meaning whether it provides both a lower-bound on the size of the smallest adversarial perturbation, as well as a globally optimal perturbation that attains the lower-bound. Concretely, we show, for a least-squares restriction of the usual adversarial attack problem, that the SDP relaxation amounts to the nonconvex projection of a point onto a hyperbola. The resulting SDP certificate is exact if and only if the projection of the point lies on the major axis of the hyperbola. Using this geometric technique, we prove that the certificate is exact over a single hidden layer under mild assumptions, and explain why it is usually conservative for several hidden layers. We experimentally confirm our theoretical insights using a general-purpose interior-point method and a custom rank-2 Burer-Monteiro algorithm.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源