论文标题
最大$ W $ - 环境巨大的组可分配包装,带有块尺寸三,并应用于光学正交代码
Maximum $w$-cyclic holely group divisible packings with block size three and applications to optical orthogonal codes
论文作者
论文摘要
在本文中,我们调查了$ W $ Cyclic Lean Group的可分割包装的组合构造,其尺寸为第三(短暂为$ 3 $ -hgdps)。对于任何正整数$ u,v,w $,带有$ u \ equiv0,1〜(\ bmod〜3)$,确切的基本块的确切数量是$ w $ -w $ 3 $ 3 $ -hgdp type $ $ $(u,w^v)$的确切数量。该结果用于确定最大三维$(u \ times v \ times w,3,1)$光学正交代码的确切编码数,最多可以使用每个空间平面和每个波长平面。
In this paper we investigate combinatorial constructions for $w$-cyclic holely group divisible packings with block size three (briefly by $3$-HGDPs). For any positive integers $u,v,w$ with $u\equiv0,1~(\bmod~3)$, the exact number of base blocks of a maximum $w$-cyclic $3$-HGDP of type $(u,w^v)$ is determined. This result is used to determine the exact number of codewords in a maximum three-dimensional $(u\times v\times w,3,1)$ optical orthogonal code with at most one optical pulse per spatial plane and per wavelength plane.