论文标题
无监督的体系结构表示学习有助于神经体系结构搜索吗?
Does Unsupervised Architecture Representation Learning Help Neural Architecture Search?
论文作者
论文摘要
现有的神经体系结构搜索(NAS)方法要么使用无法很好地扩展的离散编码编码神经体系结构,要么采用基于学习的学习方法共同学习体系结构表示,并优化造成搜索偏见的此类表示的体系结构搜索。尽管使用了广泛的使用,但在NAS中学到的建筑表现仍然很少了解。我们观察到,如果结构表示和搜索是耦合的,则神经体系结构的结构特性很难在潜在空间中保存,从而导致搜索性能较低。在这项工作中,我们从经验上发现,仅使用神经体系结构的预训练架构表示,而没有其准确性,因为标签大大提高了下游体系结构搜索效率。为了解释这些观察结果,我们可视化无监督的体系结构表示学习如何更好地鼓励具有相似连接的神经体系结构和操作员聚集在一起。这有助于绘制与潜在空间中相同区域相似的性能的神经体系结构,并使潜在空间中的体系结构过渡相对平滑,这有益于多样化的下游搜索策略。
Existing Neural Architecture Search (NAS) methods either encode neural architectures using discrete encodings that do not scale well, or adopt supervised learning-based methods to jointly learn architecture representations and optimize architecture search on such representations which incurs search bias. Despite the widespread use, architecture representations learned in NAS are still poorly understood. We observe that the structural properties of neural architectures are hard to preserve in the latent space if architecture representation learning and search are coupled, resulting in less effective search performance. In this work, we find empirically that pre-training architecture representations using only neural architectures without their accuracies as labels considerably improve the downstream architecture search efficiency. To explain these observations, we visualize how unsupervised architecture representation learning better encourages neural architectures with similar connections and operators to cluster together. This helps to map neural architectures with similar performance to the same regions in the latent space and makes the transition of architectures in the latent space relatively smooth, which considerably benefits diverse downstream search strategies.