论文标题
$π$ MEN C的高层大气的三维流体动力模拟:与$α$ transit观测值进行比较
Three-dimensional hydrodynamic simulations of the upper atmosphere of $π$ Men c: comparison with Ly$α$ transit observations
论文作者
论文摘要
目的:我们旨在限制宿主星的风和高能发射的条件,从而重现Ly $α$行星吸收的非检测。方法:我们使用多流体的三维流体动力代码对逃逸的行星气氛,恒星风及其相互作用进行建模。我们假设一个行星气氛由氢和氦气组成。我们运行的模型改变了恒星高能发射和出色的质量损失速率,每种情况下都进一步计算了LY $α$合成的行星大气吸收,并将其与观测值进行比较。结果:我们发现,使用恒星高能量发射估计,从遥远的硫酸和X射线数据估算出的恒星高能量发射的非检测,需要恒星风,其出色的质量损失率比太阳能低约六倍。该结果的结果是,对于$π$ c的男性,可检测到的$α$吸收可以仅由能量中性原子引起,这会随着恒星风的速度和/或密度的增加而变得更加丰富。相反,通过考虑恒星具有太阳样风,非检测需要出色的电离辐射辐射,大约是估计的四倍。这是因为,尽管事实是,恒星高能发射更快地使氢离子会更快地导致氢化,但它也增加了上层大气的加热和膨胀,从而将与恒星风的相互作用区域推向了远离星球,在那里,远离星球的大气密度保持中性,并且能量较小,而能量中性的中性效率则降低了。结论:将模型网格的结果与恒星风和高能发射的预期和估计的结果进行比较,我们支持这样一种观念,即$π$ MEN C的大气很可能不会以氢为主。
Aims: We aim at constraining the conditions of the wind and high-energy emission of the host star reproducing the non-detection of Ly$α$ planetary absorption. Methods: We model the escaping planetary atmosphere, the stellar wind, and their interaction employing a multi-fluid, three-dimensional hydrodynamic code. We assume a planetary atmosphere composed of hydrogen and helium. We run models varying the stellar high-energy emission and stellar mass-loss rate, further computing for each case the Ly$α$ synthetic planetary atmospheric absorption and comparing it with the observations. Results: We find that a non-detection of Ly$α$ in absorption employing the stellar high-energy emission estimated from far-ultraviolet and X-ray data requires a stellar wind with a stellar mass-loss rate about six times lower than solar. This result is a consequence of the fact that, for $π$ Men c, detectable Ly$α$ absorption can be caused exclusively by energetic neutral atoms, which become more abundant with increasing the velocity and/or the density of the stellar wind. By considering, instead, that the star has a solar-like wind, the non-detection requires a stellar ionising radiation about four times higher than estimated. This is because, despite the fact that a stronger stellar high-energy emission ionises hydrogen more rapidly, it also increases the upper atmosphere heating and expansion, pushing the interaction region with the stellar wind farther away from the planet, where the planet atmospheric density that remains neutral becomes smaller and the production of energetic neutral atoms less efficient. Conclusions: Comparing the results of our grid of models with what is expected and estimated for the stellar wind and high-energy emission, respectively, we support the idea that the atmosphere of $π$ Men c is likely not hydrogen-dominated.