论文标题
内在和Rashba自旋轨道耦合与相关性对RASHBA SOC驱动的过渡的影响之间的竞争之间的竞争之间的竞争
The competition between the intrinsic and Rashba spin-orbit coupling and effects of correlations on Rashba SOC-driven transitions in the Kane-Mele model
论文作者
论文摘要
首先,我们研究了Rashba Soc对Kane-Mele模型频段结构的影响。 Rashba SoC与内在SoC之间的竞争会导致丰富的现象学。 Rashba Soc可以使间接和直接的能量差距连续关闭,但是当Rashba Soc足够大以占主导地位时,维持频段和传导乐队之间的频段接触。我们发现,这些接触点位于$ K $和$ k^{\ prime} $或/和/和一些$2π/3 $旋转对称点约$ k $和$ k^{\ prime} $,位于布里林区域。间接和直接的能量差距分别对应于拓扑上的微不足道和非平凡的相变。对于小的内在SOC,当Rashba Soc与内在SOC的比率等于经典结果时,即$ 2 \ sqrt {3} $,就会发生拓扑非平凡的过渡。但是,对于大型内在SOC,我们发现该比率随着内在的SOC的增加而降低。其次,使用奴隶旋转平均场方法,我们研究了在电荷冷凝物和莫特地区,相关性对Rashba Soc驱动的拓扑范围和非平凡转变的影响。带有间隙或无间隙旋转激发的拓扑莫特绝缘子可能是由Rashba Soc和相关性的相互作用引起的。
We investigate, firstly, the effects of the Rashba SOC on the band structrue of the Kane-Mele model. The competition between the Rashba SOC and the intrinsic SOC can lead to the rich phenomenology. The Rashba SOC can drive the indirect and direct energy gap to close successively, but maintain the band touching between the valence band and the conduction band when the Rashba SOC is large enough to dominant the competition. We find that these touching points are located at $K$ and $K^{\prime}$ or/and some $2π/3$ rotationally symmetric points around $K$ and $K^{\prime}$ in the Brillouin zone. The indirect and direct energy gap closings correspond to the topologically trivial and non-trivial phase transitions respectively. For the small intrinsic SOC, the topologically non-trivial transition occurs when the ratio of the Rashba SOC to the intrinsic SOC is equal to the classical result, i.e. $2\sqrt{3}$. For the large intrinsic SOC, however, we find that the ratio decreases with the increasing intrinsic SOC. Secondly, using the slave-rotor mean field method we investigate the influences of the correlation on the Rashba SOC-driven topologically trivial and non-trivial transition in both the charge condensate and Mott regions. The topological Mott insulator with gapped or gapless spin excitations can arise from the interplay of the Rashba SOC and correlations.