论文标题
量子可靠的拟合
Quantum Robust Fitting
论文作者
论文摘要
许多计算机视觉应用需要从现实世界的不完美测量中恢复结构。该任务通常是通过将几何模型稳健地拟合到嘈杂和外部污染数据的数据来解决的。然而,最近的理论分析表明,在计算机视觉中,许多常用的鲁棒拟合表述不适合可拖动的解决方案和近似值。在本文中,我们探讨了量子计算机对可靠拟合的用法。为此,我们检查并建立了受布尔功能傅立叶分析启发的可靠拟合配方的实际实用性。然后,我们研究了一种量子算法来解决公式并分析经典算法的计算加速。因此,我们的工作提出了用于计算机视觉的强大配合的最早量子处理之一。
Many computer vision applications need to recover structure from imperfect measurements of the real world. The task is often solved by robustly fitting a geometric model onto noisy and outlier-contaminated data. However, recent theoretical analyses indicate that many commonly used formulations of robust fitting in computer vision are not amenable to tractable solution and approximation. In this paper, we explore the usage of quantum computers for robust fitting. To do so, we examine and establish the practical usefulness of a robust fitting formulation inspired by Fourier analysis of Boolean functions. We then investigate a quantum algorithm to solve the formulation and analyse the computational speed-up possible over the classical algorithm. Our work thus proposes one of the first quantum treatments of robust fitting for computer vision.