论文标题
调整飞秒热电子脉冲以进行超快自旋操作
Tailoring femtosecond hot-electron pulses for ultrafast spin manipulation
论文作者
论文摘要
我们已经测量了[CO/PT] 2多层在M(x nm)/Cu(100 nm)/[CO(0.6 nm)/pt(1.1 nm)] 2样品中的热电话诱导的反磁化,具体取决于封顶层M和其厚度x的性质。我们发现,在将IR光子脉冲转换为给定激光功率的热电子脉冲中,PT层比[CO/PT] X,CU或MGO层更有效。我们还发现,对于M(x)= PT(7 nm),达到了最大的相对消电幅度。我们的实验结果显示了基于超级旋转传输模型的数值模拟的定性一致性。我们得出的结论是,对应于最高的光子转换为热电子的最大相对反电磁振幅是IR渗透深度与封顶层内的热电子无弹性自由路径之间的相互作用。
We have measured the hot-electron induced demagnetization of a [Co/Pt]2 multilayer in M(x nm)/Cu(100 nm)/[Co(0.6 nm)/Pt(1.1 nm)]2 samples depending on the nature of the capping layer M and its thickness x. We found out that a Pt layer is more efficient than [Co/Pt]X, Cu or MgO layers in converting IR photon pulses into hot-electron pulses at a given laser power. We also found out that the maximum relative demagnetization amplitude is reached for M(x) = Pt (7 nm). Our experimental results show qualitative agreement with numerical simulations based on the superdiffusive spin transport model. We concluded that the maximum relative demagnetization amplitude, which corresponds to the highest photon conversion into hot-electrons, is an interplay between the IR penetration depth and the hot-electron inelastic mean free path within the capping layer.