论文标题

空间准文献构图运算符,并应用于Neumann特征值

Space quasiconformal composition operators with applications to Neumann eigenvalues

论文作者

Gol'dshtein, Vladimir, Hurri-Syrjänen, Ritva, Pchelintsev, Valerii, Ukhlov, Alexander

论文摘要

在本文中,我们获得了$ p $ laplace操作员的neumann特征值的估算值,这些空间域满足了quasihyperbolic边界条件。建议的方法基于准文构映射生成的组成算子及其应用于Sobolev-Poincaré-Qualities。通过使用锋利的反向Hölder不平等的版本,我们可以完善对准球的估计值,即在整个空间的准形式映射下的球图像。

In this article we obtain estimates of Neumann eigenvalues of $p$-Laplace operators in a large class of space domains satisfying quasihyperbolic boundary conditions. The suggested method is based on composition operators generated by quasiconformal mappings and their applications to Sobolev-Poincaré-inequalities. By using a sharp version of the inverse Hölder inequality we refine our estimates for quasi-balls, that is, images of balls under quasiconformal mappings of the whole space.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源