论文标题

Banach晶格值连续函数的亚amir-cambern定理

An Amir-Cambern theorem for subspaces of Banach lattice-valued continuous functions

论文作者

Rondoš, Jakub, Spurný, Jiří

论文摘要

对于$ i = 1,2 $,让$ e_i $成为$ \ m athbb {r} $的反射性班克晶格,带有特定参数$λ^+(e_i)> 1 $,让$ k_i $成为本地紧凑(hausdorff)拓扑空间,让$ \ \ \ \ \ mathcal { $ \ MATHCAL {C} _0(k_i,e_i)$,使得Choquet Boundare $ \ Mathcal {Ch} _ {\ Mathcal {\ Mathcal {h} _i} k_i $ of $ \ MATHCAL {我们表明,如果存在同构$ t \ colon \ Mathcal {h} _1 \ to \ Mathcal {h} _2 $ at $ \ vert t \ vert t \ vert \ cdot \ cdot \ vert \ vert \ vert t^{ - 1} $ t $和$ t^{ - 1} $保存阳性,然后$ \ Mathcal {ch} _ {\ Mathcal {h} _1} k_1 $是同型到$ \ Mathcal {ch} _ {

For $i=1,2$, let $E_i$ be a reflexive Banach lattice over $\mathbb{R}$ with a certain parameter $λ^+(E_i)>1$, let $K_i$ be a locally compact (Hausdorff) topological space and let $\mathcal{H}_i$ be a closed subspace of $\mathcal{C}_0(K_i, E_i)$ such that each point of the Choquet boundary $\mathcal{Ch}_{\mathcal{H}_i} K_i$ of $\mathcal{H}_i$ is a weak peak point. We show that if there exists an isomorphism $T\colon \mathcal{H}_1 \to \mathcal{H}_2$ with $\Vert T \Vert \cdot \Vert T^{-1} \Vert<\min \lbrace λ^+(E_1), λ^+(E_2) \rbrace$ such that $T$ and $T^{-1}$ preserve positivity, then $\mathcal{Ch}_{\mathcal{H}_1} K_1$ is homeomorphic to $\mathcal{Ch}_{\mathcal{H}_2} K_2$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源