论文标题

在霍奇类型的正交本地模型上

On orthogonal local models of Hodge type

论文作者

Zachos, Ioannis

论文摘要

我们研究了局部模型,这些模型描述了非正交组的非PEL类型的shimura品种的奇异性,在这些原始组中,单个晶格的稳定剂给出了水平亚组的奇异性。特别是,我们使用Pappas-Zhu结构,并提供明确的方程式,描述了一个晶格给出的正交局部模型的“最坏”点的开放子集。这些方程式在确定方案中显示了当地模型的仿射图。使用此情况,我们证明了局部模型的特殊纤维减少和Cohen-Macaulay。

We study local models that describe the singularities of Shimura varieties of non-PEL type for orthogonal groups at primes where the level subgroup is given by the stabilizer of a single lattice. In particular, we use the Pappas-Zhu construction and we give explicit equations that describe an open subset around the "worst" point of orthogonal local models given by a single lattice. These equations display the affine chart of the local model as a hypersurface in a determinantal scheme. Using this we prove that the special fiber of the local model is reduced and Cohen-Macaulay.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源