论文标题

湍流,连贯性和崩溃:核心进化的三个阶段

Turbulence, Coherence and Collapse: Three Phases for Core Evolution

论文作者

Offner, Stella S. R., Taylor, Josh, Markey, Carleen, Chen, Hope How-Huan, Pineda, Jaime E., Goodman, Alyssa A., Burkert, Andreas, Ginsburg, Adam, Choudhury, Spandan

论文摘要

我们通过跟踪恒星形成云的磁性流动力模拟中的结构来研究密集核的形成,进化和崩溃。我们使用树状图算法鉴定核心,并利用机器学习技术,包括神经气体原型学习和模糊$ c $ -MEANS聚类,以分析核心的密度和速度分散曲线以及六个散装特性。我们使用统一的歧管近似和投影(UMAP)产生2D可视化,从而促进了物理性能与三个部分重叠的三个阶段之间的连接:i)未结合的湍流结构(I期),II)相干核心具有低湍流(II期)和III核心的相干核心,许多核心是原始的III(阶段III)。在第二阶段,我们确定了达到准平衡状态的长寿命相干核心的种群。大多数prestell核心在II期形成,并在发展为III期后变成原恒星。由于湍流的云环境,初始核心特性并不能唯一预测最终的进化,即核心进化是随机的,并且核心没有一个进化路径。相位寿命为1.0 $ \ pm $ 0.1 $ \ times $ 10 $^5 $ yr,1.3 $ \ pm $ 0.2 $ \ times $ 10 $^5 $ yr和1.8 $ \ pm $ \ pm $ 0.3 $ \ times $ 10 $^5 $^5 $^5 $ yr分别为I期,II,II和III。我们将结果与NH $ _3 $浓密核心的观测值进行比较。已知的相干核主要映射到II期,而大多数湍流压力夹板的核心映射到I或III期。我们预测,观察到的无星核的很大一部分具有未解决的相干区域,并且$ \ gtrsim 20 $%观察到的无星核不会形成恒星。除了通常的体积特性外,核心径向谱的测量还可以对核心进化进行更准确的预测。

We study the formation, evolution and collapse of dense cores by tracking structures in a magnetohydrodynamic simulation of a star-forming cloud. We identify cores using the dendrogram algorithm and utilize machine learning techniques, including Neural Gas prototype learning and Fuzzy $c$-means clustering, to analyze the density and velocity dispersion profiles of cores together with six bulk properties. We produce a 2-d visualization using a Uniform Manifold Approximation and Projection (UMAP), which facilitates the connection between physical properties and three partially-overlapping phases: i) unbound turbulent structures (Phase I), ii) coherent cores that have low turbulence (Phase II), and iii) bound cores, many of which become protostellar (Phase III). Within Phase II we identify a population of long-lived coherent cores that reach a quasi-equilibrium state. Most prestellar cores form in Phase II and become protostellar after evolving into Phase III. Due to the turbulent cloud environment, the initial core properties do not uniquely predict the eventual evolution, i.e., core evolution is stochastic, and cores follow no one evolutionary path. The phase lifetimes are 1.0$\pm$0.1$\times$10$^5$ yr, 1.3$\pm$0.2$\times$10$^5$ yr, and 1.8$\pm$0.3$\times$10$^5$ yr for Phase I, II, and III, respectively. We compare our results to NH$_3$ observations of dense cores. Known coherent cores predominantly map into Phase II, while most turbulent pressure-confined cores map to Phase I or III. We predict that a significant fraction of observed starless cores have unresolved coherent regions and that $\gtrsim 20$% of observed starless cores will not form stars. Measurements of core radial profiles, in addition to the usual bulk properties, will enable more accurate predictions of core evolution.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源