论文标题
时空kriging的电感图神经网络
Inductive Graph Neural Networks for Spatiotemporal Kriging
论文作者
论文摘要
时间序列预测和时空kriging是时空数据分析中最重要的两个任务。关于图形神经网络的最新研究在时间序列的预测中取得了长足进展,而对Kriging问题的关注很少 - 恢复了未采样的位置/传感器的信号。大多数现有的可伸缩kriging方法(例如,矩阵/张量完成)都是转导的,因此,当我们有一个新的传感器插值时,需要进行全面的重新训练。在本文中,我们开发了一个归纳图神经网络Kriging(IGNNK)模型,以恢复网络/图结构上未采样传感器的数据。为了概括距离和可达性的效果,我们将随机子图作为样品产生,并重建每个样品的相应邻接矩阵。通过重建每个样本子图上的所有信号,INGNK可以有效地学习空间消息传递机制。几个现实世界时空数据集的经验结果证明了我们模型的有效性。此外,我们还发现,可以成功地将学习的模型转移到看不见的数据集中的相同类型的Kriging任务中。我们的结果表明:1)GNN是空间kriging的有效工具; 2)可以使用动态邻接矩阵训练感应GNN; 3)训练有素的模型可以转移到新的图结构中,4)INGNK可用于生成虚拟传感器。
Time series forecasting and spatiotemporal kriging are the two most important tasks in spatiotemporal data analysis. Recent research on graph neural networks has made substantial progress in time series forecasting, while little attention has been paid to the kriging problem -- recovering signals for unsampled locations/sensors. Most existing scalable kriging methods (e.g., matrix/tensor completion) are transductive, and thus full retraining is required when we have a new sensor to interpolate. In this paper, we develop an Inductive Graph Neural Network Kriging (IGNNK) model to recover data for unsampled sensors on a network/graph structure. To generalize the effect of distance and reachability, we generate random subgraphs as samples and reconstruct the corresponding adjacency matrix for each sample. By reconstructing all signals on each sample subgraph, IGNNK can effectively learn the spatial message passing mechanism. Empirical results on several real-world spatiotemporal datasets demonstrate the effectiveness of our model. In addition, we also find that the learned model can be successfully transferred to the same type of kriging tasks on an unseen dataset. Our results show that: 1) GNN is an efficient and effective tool for spatial kriging; 2) inductive GNNs can be trained using dynamic adjacency matrices; 3) a trained model can be transferred to new graph structures and 4) IGNNK can be used to generate virtual sensors.