论文标题
不确定性感知的分数分配学习针对行动质量评估
Uncertainty-aware Score Distribution Learning for Action Quality Assessment
论文作者
论文摘要
近年来,评估视频的动作质量引起了人们的关注。大多数现有方法通常会根据回归算法解决此问题,这些算法忽略了由多个法官或其主观评估引起的分数标签的内在歧义。为了解决这个问题,我们提出了一种不确定性感知的分数分布学习(USDL)进行行动质量评估(AQA)。具体而言,我们将动作视为与分数分布相关的实例,该实例描述了不同评估得分的概率。此外,在有可用的细粒度分数标签(例如,动作的难度程度或来自不同法官的多个分数)的情况下,我们进一步设计了一种多路径不确定性 - 感知得分分布分布(MUSDL)方法来探索分数的分离组件。我们对包含各种奥林匹克行动和外科活动的三个AQA数据集进行了实验,我们的方法将新的最新艺术品设置为Spearman的等级相关性。
Assessing action quality from videos has attracted growing attention in recent years. Most existing approaches usually tackle this problem based on regression algorithms, which ignore the intrinsic ambiguity in the score labels caused by multiple judges or their subjective appraisals. To address this issue, we propose an uncertainty-aware score distribution learning (USDL) approach for action quality assessment (AQA). Specifically, we regard an action as an instance associated with a score distribution, which describes the probability of different evaluated scores. Moreover, under the circumstance where fine-grained score labels are available (e.g., difficulty degree of an action or multiple scores from different judges), we further devise a multi-path uncertainty-aware score distributions learning (MUSDL) method to explore the disentangled components of a score. We conduct experiments on three AQA datasets containing various Olympic actions and surgical activities, where our approaches set new state-of-the-arts under the Spearman's Rank Correlation.