论文标题
自动稳定的电子
Auto-Stabilized Electron
论文作者
论文摘要
我们包括自我磨碎在单电子与电磁场的自我交往中的影响。当包括重力的效果时,K-vector不可避免地截止 - 上限是有限的。自我磨损场的内向压力平衡了自我交往的外部压力。这两种压力都是由具有两个场的电子的自我交织产生的 - 真空电磁场和自我诱导的重力场。具体而言,我们证明必须包括重力效应以稳定电子。我们使用爱因斯坦方程进行裸质量和电子半径的精确计算。我们找到了一个近距离的解决方案。我们发现电子半径$ r_ { $ \ sqrt {\ hbar g/c^{3 \ text {}}} $是planck长度$ \ ell _ {p} $,它是从第一原则教育的。我们发现电磁和引力场在$ \左(8/3 \右)\ sqrt {α/4π} \ sqrt {\ hbar c/g} $ = \ = \ left(8/3 \ right)普朗克质量$ m_ {p} $。恢复法的方法是通过$ r_ {e} $的内部和外部指标的连续性来实现。
We include effects of self-gravitation in the self-interaction of single electrons with the electromagnetic field. When the effect of gravitation is included there is an inevitable cut-off of the k-vector - the upper limit is finite. The inward pressure of the self-gravitating field balances the outward pressure of self-interaction. Both pressures are generated by self-interactions of the electron with two fields - the vacuum electromagnetic field and the self-induced gravitational field. Specifically we demonstrate that gravitational effects must be included to stabilize the electron. We use the Einstein equation to perform an exact calculation of the bare mass and electron radius. We find a close-form solution. We find the electron radius $r_{e} =9.2\sqrt{α/ 4π} \sqrt{\hbar G/c^{3}}$ $ =9.2\sqrt{α/ 4π}l_{P}$ $ \approx 10^{ -36}m$ . $\sqrt{\hbar G/c^{3\text{}}}$ is the Planck length $\ell _{P}$ , which is educed from first principles. We find that the electromagnetic and gravitational fields merge at $\left (8/3\right )\sqrt{α/ 4π} \sqrt{\hbar c/G}$ $ =\left (8/3\right )\sqrt{α/ 4π}\ m_{P} =10^{17} G e V$ in terms of the Planck mass $m_{P}$ . Renormalisation is accomplished by requiring continuity of the interior and exterior metrics at $r_{e}$ .