论文标题
低规律性解针对由小部分驱动的随机几何波动方程
Low regularity solutions to the stochastic geometric wave equation driven by a fractional Brownian sheet
论文作者
论文摘要
我们宣布存在一个独特的局部解决方案的结果,以在一个维度的Minkowski空间$ \ mathbb {r}^{1+1} $中具有随意紧凑的Riemannian歧管中的值。我们考虑了一个粗糙的初始数据,其规律性低于关键能量。
We announce a result on the existence of a unique local solution to a stochastic geometric wave equation on the one dimensional Minkowski space $\mathbb{R}^{1+1}$ with values in an arbitrary compact Riemannian manifold. We consider a rough initial data in the sense that its regularity is lower than the energy critical.