论文标题

海平面异常预测的多模式融合

Multimodal fusion for sea level anomaly forecasting

论文作者

Wang, Guosong, Wang, Xidong, Wu, Xinrong, Liu, Kexiu, Qi, Yiquan, Sun, Chunjian, Fu, Hongli

论文摘要

高度计和散射仪的累积遥感数据为预测海洋国家的新机会并改善了海洋/大气交流的知识。以前很少有研究集中在海平面异常(SLA)多变的多步骤预测,以不同方式进行多变量的深度学习。对于本文,一种名为MMFNET的新型多模式融合方法用于南中国海(SCS)的SLA多步骤预测。首先,通过改进的卷积长期记忆(CORVLSTM)网络对每日多个遥感数据进行了改进的培训,从1993年到2016年进行了培训。然后,一个原位预测网络由改进的LSTM网络培训,由改进的LSTM网络培训,该网络由一个集合经验模式分解(EEMD-LSTM)(EEMD-LSTM)分解。最后,两个单模式网络通过海洋数据同化方案融合。在2017年至2019年的测试期间,MMFNET(单模式ConvlSTM)的平均RMSE为4.03 cm(4.51 cm),第15天的异常相关系数为0.78(0.67),MMFNET的表现高于MMFNET的表现,比当前的日常动态(统计学)和统计学(HYCOM)和统计学(HYCOM)和统计学(HYCOM)(均可达到)(HYCOM)(均可达到)(HYCOM)(均可达到)(HYCOM)的效果预测系统。敏感性实验分析表明,MMFNET添加了CCMP SCAT产品和SLA预测的OISST,已在一周内改善了预测范围,并且可以有效地产生15天的SLA预测,并具有合理的准确性。在北部太平洋的范围内,MMFNET的良好分布和范围的分布量很少。 MMFNET与其他经典操作模型产品之间的SLA变异性。

The accumulated remote sensing data of altimeters and scatterometers have provided a new opportunity to forecast the ocean states and improve the knowledge in ocean/atmosphere exchanges. Few previous studies have focused on sea level anomaly (SLA) multi-step forecasting by multivariate deep learning for different modalities. For this paper, a novel multimodal fusion approach named MMFnet is used for SLA multi-step forecasting in South China Sea (SCS). First, a grid forecasting network is trained by an improved Convolutional Long Short-Term Memory (ConvLSTM) network on daily multiple remote sensing data from 1993 to 2016. Then, an in-situ forecasting network is trained by an improved LSTM network, which is decomposed by the ensemble empirical mode decomposition (EEMD-LSTM), on real-time, in-situ and remote sensing data. Finally, the two single-modal networks are fused by an ocean data assimilation scheme. During the test period from 2017 to 2019, the average RMSE of the MMFnet (single-modal ConvLSTM) is 4.03 cm (4.51 cm), the 15th-day anomaly correlation coefficient is 0.78 (0.67), the performance of MMFnet is much higher than those of current state-of-the-art dynamical (HYCOM) and statistical (ConvLSTM, Persistence and daily Climatology) forecasting systems. Sensitivity experiments analysis indicates that, the MMFnet, which added CCMP SCAT products and OISST for SLA forecasting, has improved the forecast range over a week and can effectively produce 15-day SLA forecasting with reasonable accuracies.In an extension of the validation over the North Pacific Ocean, MMFnet can calculate the forecasting results in a few minutes, and we find good agreement in amplitude and distribution of SLA variability between MMFnet and other classical operational model products.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源