论文标题

域的对抗权重进行回归中的适应

Adversarial Weighting for Domain Adaptation in Regression

论文作者

de Mathelin, Antoine, Richard, Guillaume, Deheeger, Francois, Mougeot, Mathilde, Vayatis, Nicolas

论文摘要

我们提出了一种基于实例的新方法来处理在协方差转移的假设下,在监督领域适应的背景下处理回归任务。本文开发的方法是基于以下假设:在训练阶段,可以将目标域上的任务有效地学习有效地学习。我们介绍了针对域适应的优化目标的新颖公式,该计划依赖于根据特定任务和一类假设表征域之间差异的差异距离。为了解决此问题,我们开发了一种对抗性网络算法,该算法同时学习源加权方案和一个馈送梯度下降中的任务。我们通过可重复实验提供了该方法与回归域适应的公共数据集相关性的数值证据。

We present a novel instance-based approach to handle regression tasks in the context of supervised domain adaptation under an assumption of covariate shift. The approach developed in this paper is based on the assumption that the task on the target domain can be efficiently learned by adequately reweighting the source instances during training phase. We introduce a novel formulation of the optimization objective for domain adaptation which relies on a discrepancy distance characterizing the difference between domains according to a specific task and a class of hypotheses. To solve this problem, we develop an adversarial network algorithm which learns both the source weighting scheme and the task in one feed-forward gradient descent. We provide numerical evidence of the relevance of the method on public data sets for regression domain adaptation through reproducible experiments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源