论文标题
渐近的规律性和吸引人的吸引子,可稍作压缩的Brinkman-Forcheimer方程
Asymptotic regularity and attractors for slightly compressible Brinkman-Forcheimer equations
论文作者
论文摘要
考虑到具有差异式边界条件的有界3D域中的略有压缩的边缘 - 福尔切氏症方程。这些方程模拟了多孔介质中的流体运动。这些方程在高阶能量空间中的耗散性得到了研究,并研究了溶液的规律性和平滑性能。此外,还验证了自然相空间中这些方程的全球和指数吸引子的存在。
Slightly compressible Brinkman-Forchheimer equations in a bounded 3D domain with Dirichlet boundary conditions are considered. These equations model fluids motion in porous media. The dissipativity of these equations in higher order energy spaces is obtained and regularity and smoothing properties of the solutions are studied. In addition, the existence of a global and an exponential attractors for these equations in a natural phase space is verified.