论文标题
增加森林的对称功能
A symmetric function of increasing forests
论文作者
论文摘要
对于冷漠图$ g $,我们定义了跨越$ g $的跨越森林的对称功能。我们证明该对称函数满足某些线性关系,这也通过色素准对称函数和单细胞LLT多项式来满足。结果,我们在基本的基础上对LLT多项式的系数进行了组合解释(最多是$(Q-1)$)的因素,从而加强了Alexandersson和Sulzgruber给出的描述。
For an indifference graph $G$ we define a symmetric function of increasing spanning forests of $G$. We prove that this symmetric function satisfies certain linear relations, which are also satisfied by the chromatic quasisymmetric function and unicellular LLT polynomials. As a consequence we give a combinatorial interpretation of the coefficients of the LLT polynomial in the elementary basis (up to a factor of a power of $(q-1)$), strengthening the description given by Alexandersson and Sulzgruber.