论文标题
使用遗传算法对Von Wolffersdorff模型的校准
Calibration of the von Wolffersdorff model using Genetic Algorithms
论文作者
论文摘要
本文提出了一个基于遗传算法(GA)的优化框架,以校准von Wolffersdorff的本构定律。该本构定律称为砂不塑性(SH),并允许对土壤行为进行稳健而准确的建模,但需要进行涉及八个参数的复杂校准。提出的优化可以通过将GA与在测试条件中集成SH的数值求解器相结合,从而可以自动拟合这些参数,并通过将GA与GA结合在一起,从而自动拟合这些参数。通过多次重复相同的校准,优化器的随机性可以实现校准参数的不确定性量化,并允许研究其对模型预测的相对重要性。在从土壤建模网站上验证了Excaliber-Laboratoration软件上的数值求解器后,在合成数据集上测试了GA校准,以分析结果的收敛性和统计数据。特别是,相关分析表明,八个模型参数的两对夫妇密切相关。最后,对von Wolffersdorff,1996和Herle&Gudehus(1999)在Hochstetten Sand上的结果进行了测试。通过遗传算法优化确定的模型参数可以通过实验数据改善匹配,从而改善了更好的校准。
This article proposes an optimization framework, based on Genetic Algorithms (GA), to calibrate the constitutive law of von Wolffersdorff. This constitutive law is known as Sand Hypoplasticity (SH), and allows for robust and accurate modeling of the soil behavior but requires a complex calibration involving eight parameters. The proposed optimization can automatically fit these parameters from the results of an oedometric and a triaxial drained compression test, by combining the GA with a numerical solver that integrates the SH in the test conditions. By repeating the same calibration several times, the stochastic nature of the optimizer enables the uncertainty quantification of the calibration parameters and allows studying their relative importance on the model prediction. After validating the numerical solver on the ExCaliber-Laboratory software from the SoilModels' website, the GA calibration is tested on a synthetic dataset to analyze the convergence and the statistics of the results. In particular, a correlation analysis reveals that two couples of the eight model parameters are strongly correlated. Finally, the calibration procedure is tested on the results from von Wolffersdorff, 1996, and Herle & Gudehus, 1999, on the Hochstetten sand. The model parameters identified by the Genetic Algorithm optimization improves the matching with the experimental data and hence lead to a better calibration.