论文标题

粘弹性通道流中的确切行驶波解决方案

Exact travelling wave solutions in viscoelastic channel flow

论文作者

Page, Jacob, Dubief, Yves, Kerswell, Rich R.

论文摘要

Elasto惯性湍流(EIT)是一种在聚合物溶液中观察到的新的,二维混沌流状态,可能与惯性弹性湍流和拖曳降低的牛顿湍流有可能连接。在这封信中,我们认为EIT的起源与牛顿的湍流根本不同,通过在高魏森堡数字上发现EIT和弹性惯性线性不稳定性之间的动态连接(Garg et al。Phys。Thy。121,024502,2018)。通过在粘弹性平行流中隔离第一个已知的确切一致性结构(非线性弹性惯性流动波(TWS))来建立该链接,并在线性不稳定性下播放,并将其跟踪至大大降低weissenberg数字。这些TWS在聚合物拉伸场中具有独特的``箭头''结构,并且可以清楚地识别出EIT中的瞬时,并且如果Weissenberg的数字足够大,则可以在EIT中进行EIT动力学的吸引力。我们的发现表明,牛顿湍流的动态系统图片是围绕许多(不稳定的)简单不变解决方案的共存,尽管这些解决方案依靠弹性存在。

Elasto-inertial turbulence (EIT) is a new, two-dimensional chaotic flow state observed in polymer solutions with possible connections to inertialess elastic turbulence and drag-reduced Newtonian turbulence. In this Letter, we argue that the origins of EIT are fundamentally different from Newtonian turbulence by finding a dynamical connection between EIT and an elasto-inertial linear instability recently found at high Weissenberg numbers (Garg et al. Phys. Rev. Lett. 121, 024502, 2018). This link is established by isolating the first known exact coherent structures in viscoelastic parallel flows - nonlinear elasto-inertial travelling waves (TWs) - borne at the linear instability and tracking them down to substantially lower Weissenberg numbers where EIT exists. These TWs have a distinctive ``arrowhead'' structure in the polymer stretch field and can be clearly recognised, albeit transiently, in EIT, as well as being attractors for EIT dynamics if the Weissenberg number is sufficiently large. Our findings suggest that the dynamical systems picture in which Newtonian turbulence is built around the co-existence of many (unstable) simple invariant solutions populating phase space carries over to EIT, though these solutions rely on elasticity to exist.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源