论文标题

通过梯度树的增强生存数据的梯度树识别,用于价值功能的非参数指导子组识别方法

A Nonparametric Method for Value Function Guided Subgroup Identification via Gradient Tree Boosting for Censored Survival Data

论文作者

Zhang, Pingye, Ma, Junshui, Chen, Xinqun, Shentu, Yue

论文摘要

在具有生存结果的随机临床试验中,基于基线基因组,蛋白质组学标记或临床特征的亚组鉴定越来越兴趣。一些现有方法通过直接建模结果或治疗效果来识别从实验治疗中大大受益的亚组。当目标是为给定患者找到最佳治疗而不是找到适合给定治疗的患者时,在个性化治疗方案框架下的方法估计了个性化治疗规则,该规则将导致通过价值功能衡量的最佳预期临床结果。将价值函数的概念连接到子组识别,我们提出了一种非参数方法,该方法通过最大化一个直接反映基于限制的平均生存时间的值函数来搜索亚组成员得分。提出了梯度树提升算法来搜索单个子组成员得分。我们进行仿真研究以评估所提出的方法的性能,并对AIDS临床试验进行应用以进行例证。

In randomized clinical trials with survival outcome, there has been an increasing interest in subgroup identification based on baseline genomic, proteomic markers or clinical characteristics. Some of the existing methods identify subgroups that benefit substantially from the experimental treatment by directly modeling outcomes or treatment effect. When the goal is to find an optimal treatment for a given patient rather than finding the right patient for a given treatment, methods under the individualized treatment regime framework estimate an individualized treatment rule that would lead to the best expected clinical outcome as measured by a value function. Connecting the concept of value function to subgroup identification, we propose a nonparametric method that searches for subgroup membership scores by maximizing a value function that directly reflects the subgroup-treatment interaction effect based on restricted mean survival time. A gradient tree boosting algorithm is proposed to search for the individual subgroup membership scores. We conduct simulation studies to evaluate the performance of the proposed method and an application to an AIDS clinical trial is performed for illustration.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源