论文标题

通过神经网络优化Covid-19的非药物测量

Optimisation of non-pharmaceutical measures in COVID-19 growth via neural networks

论文作者

Riccardi, Annalisa, Gemignani, Jessica, Fernández-Navarro, Francisco, Heffernan, Anna

论文摘要

3月19日,世界卫生组织宣布大流行。通过这一全球蔓延,许多国家目睹了由严重的大规模隔离或锁定措施控制的确认案件的指数增长。但是,有些人通过不同的行动时间线阻止了这种指数增长。目前,当一些人继续解决增长时,另一些人试图安全提高限制,同时避免复兴。这项研究旨在通过一种新型的软计算方法来量化政府行动在减轻SARS-COV-2病毒传播中的影响,该方法可以同时使用神经网络模型,以预测累积感染的每日坡度增加,并且具有对政府限制时间序列的参数性,以理解最佳的有害动作。意大利和台湾两个领土的数据已收集,以模拟政府在旅行,测试和执行社会距离措施以及人们的联系和对政府行动的限制方面的限制。据发现,一个更大且较早的测试活动具有更严格的进入限制,使两个地区都受益,从而较少确认的案件。有趣的是,这种情况与全国范围内对意大利的限制实施了较早但更温和的实施,从而支持台湾缺乏全国性的锁定。通过纯粹数据驱动的方法发现的结果符合数学流行病学模型的主要发现,证明了所提出的方法具有价值,并且仅数据包含有价值的知识来告知决策者。

On 19th March, the World Health Organisation declared a pandemic. Through this global spread, many nations have witnessed exponential growth of confirmed cases brought under control by severe mass quarantine or lockdown measures. However, some have, through a different timeline of actions, prevented this exponential growth. Currently as some continue to tackle growth, others attempt to safely lift restrictions whilst avoiding a resurgence. This study seeks to quantify the impact of government actions in mitigating viral transmission of SARS-CoV-2 by a novel soft computing approach that makes concurrent use of a neural network model, to predict the daily slope increase of cumulative infected, and an optimiser, with a parametrisation of the government restriction time series, to understanding the best set of mitigating actions. Data for two territories, Italy and Taiwan, have been gathered to model government restrictions in traveling, testing and enforcement of social distance measures as well as people connectivity and adherence to government actions. It is found that a larger and earlier testing campaign with tighter entry restrictions benefit both regions, resulting in significantly less confirmed cases. Interestingly, this scenario couples with an earlier but milder implementation of nationwide restrictions for Italy, thus supporting Taiwan's lack of nationwide lockdown. The results, found with a purely data-driven approach, are in line with the main findings of mathematical epidemiological models, proving that the proposed approach has value and that the data alone contains valuable knowledge to inform decision makers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源