论文标题

多层感知的Pac-Bayesian概括界

PAC-Bayesian Generalization Bounds for MultiLayer Perceptrons

论文作者

Lan, Xinjie, Guo, Xin, Barner, Kenneth E.

论文摘要

我们研究了多层感知器(MLP)的Pac-Bayesian泛化界限,并具有横向熵损失。最重要的是,我们在两个方面介绍了MLP的概率解释:(i)MLP制定了吉布斯分布的家族,并且(ii)最大程度地减少MLP的跨透明副本损失等同于贝叶斯变异推断,这与研究Pac-bayesian在MLPS上的固定概率基础。此外,根据证据下限(ELBO),我们证明具有跨熵损失的MLP固有地保证了Pac Bayesian的概括界限,而最小化MLP的Pac-Bayesian泛化范围等效于最大化ELBO。最后,我们验证了在基准数据集上绑定的拟议的pac-bayesian泛化。

We study PAC-Bayesian generalization bounds for Multilayer Perceptrons (MLPs) with the cross entropy loss. Above all, we introduce probabilistic explanations for MLPs in two aspects: (i) MLPs formulate a family of Gibbs distributions, and (ii) minimizing the cross-entropy loss for MLPs is equivalent to Bayesian variational inference, which establish a solid probabilistic foundation for studying PAC-Bayesian bounds on MLPs. Furthermore, based on the Evidence Lower Bound (ELBO), we prove that MLPs with the cross entropy loss inherently guarantee PAC- Bayesian generalization bounds, and minimizing PAC-Bayesian generalization bounds for MLPs is equivalent to maximizing the ELBO. Finally, we validate the proposed PAC-Bayesian generalization bound on benchmark datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源