论文标题

带插件的异常检测,并具有期望最大化过滤

Plug-and-Play Anomaly Detection with Expectation Maximization Filtering

论文作者

Khan, Muhammad Umar Karim, Fatima, Mishal, Kyung, Chong-Min

论文摘要

人群中的异常检测可以提前救援反应。用于人群监视的插件智能摄像头具有许多与典型异常检测不同的限制:训练数据不能迭代地使用;没有培训标签;需要同时进行培训和分类。在本文中,我们通过我们的方法来解决所有这些约束。我们提出了一个核心异常检测(CAD)神经网络,该网络通过无监督方法了解场景中对象的运动行为。在标准数据集中,单个训练时期的CAD平均表明,与卷积自动编码器和基于卷积LSTM的方法的最佳结果相比,曲线(AUC)下面积(AUC)的面积增加了百分比为4.66%和4.9%。与基于卷积LSTM的方法相比,通过单个训练时期,我们的方法将AUC提高了8.03%。我们还提出了一个期望最大化过滤器,该过滤器选择用于训练核心异常检测网络的样品。当在视频流上进行人群异常检测时,与未来的基于框架预测的方法相比,总体框架将AUC提高了24.87%。我们认为,我们的工作是使用自动插入式智能摄像机进行人群异常检测的深度学习方法的第一步。

Anomaly detection in crowds enables early rescue response. A plug-and-play smart camera for crowd surveillance has numerous constraints different from typical anomaly detection: the training data cannot be used iteratively; there are no training labels; and training and classification needs to be performed simultaneously. We tackle all these constraints with our approach in this paper. We propose a Core Anomaly-Detection (CAD) neural network which learns the motion behavior of objects in the scene with an unsupervised method. On average over standard datasets, CAD with a single epoch of training shows a percentage increase in Area Under the Curve (AUC) of 4.66% and 4.9% compared to the best results with convolutional autoencoders and convolutional LSTM-based methods, respectively. With a single epoch of training, our method improves the AUC by 8.03% compared to the convolutional LSTM-based approach. We also propose an Expectation Maximization filter which chooses samples for training the core anomaly-detection network. The overall framework improves the AUC compared to future frame prediction-based approach by 24.87% when crowd anomaly detection is performed on a video stream. We believe our work is the first step towards using deep learning methods with autonomous plug-and-play smart cameras for crowd anomaly detection.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源