论文标题

关于使用CNN进行快速无线电信号预测的实证研究

An empirical study on using CNNs for fast radio signal prediction

论文作者

Ozyegen, Ozan, Mohammadjafari, Sanaz, mokhtari, Karim El, Cevik, Mucahit, Ethier, Jonathan, Basar, Ayse

论文摘要

地理区域中的准确射频功率预测是使用射线跟踪软件找到最佳发射器位置的计算昂贵部分。我们经验分析了深度学习模型的生存能力,以加快这一过程。具体而言,通常使用包括CNN和UNET在内的深度学习方法进行分割,也可以用于权力预测任务。我们认为一个数据集由五个不同区域尺寸的五个不同区域组成的射频功率值组成。我们比较了基于深度学习的预测模型,包括用于权力预测任务的UNET模型的四个不同变化。更复杂的UNET变化改善了高分辨率框架(例如256x256)的模型。但是,在较低的分辨率上使用相同的模型会导致过度拟合,并且更简单的模型的性能更好。我们的详细数值分析表明,深度学习模型在权力预测中有效,并且能够很好地推广到新区域。

Accurate radio frequency power prediction in a geographic region is a computationally expensive part of finding the optimal transmitter location using a ray tracing software. We empirically analyze the viability of deep learning models to speed up this process. Specifically, deep learning methods including CNNs and UNET are typically used for segmentation, and can also be employed in power prediction tasks. We consider a dataset that consists of radio frequency power values for five different regions with four different frame dimensions. We compare deep learning-based prediction models including RadioUNET and four different variations of the UNET model for the power prediction task. More complex UNET variations improve the model on higher resolution frames such as 256x256. However, using the same models on lower resolutions results in overfitting and simpler models perform better. Our detailed numerical analysis shows that the deep learning models are effective in power prediction and they are able to generalize well to the new regions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源