论文标题
$ \ mathbb {a} $ - 某些$ 2 \ times 2 $运算符矩阵的数值半径
Further inequalities for the $\mathbb{A}$-numerical radius of certain $2 \times 2$ operator matrices
论文作者
论文摘要
Let $\mathbb{A}= \begin{pmatrix} A & 0 \\ 0 & A \\ \end{pmatrix} $ be a $2\times2$ diagonal operator matrix whose each diagonal entry is a bounded positive (semidefinite) linear operator $A$ acting on a complex Hilbert space $\mathcal{H}$.在本文中,我们得出了几个$ \ mathbb {a} $ - 数字半径不等式的$ 2 \ times 2 $运算符矩阵,其条目与正算子$ a $ a $ oon $ \ nathcal {h} $相对于$ \ a $ a $ a $ a $ a的条目有界限。还提供了我们不平等的某些应用。
Let $\mathbb{A}= \begin{pmatrix} A & 0 \\ 0 & A \\ \end{pmatrix} $ be a $2\times2$ diagonal operator matrix whose each diagonal entry is a bounded positive (semidefinite) linear operator $A$ acting on a complex Hilbert space $\mathcal{H}$. In this paper, we derive several $\mathbb{A}$-numerical radius inequalities for $2\times 2$ operator matrices whose entries are bounded with respect to the seminorm induced by the positive operator $A$ on $\mathcal{H}$. Some applications of our inequalities are also given.