论文标题

LIDARSIM:利用现实世界的现实激光雷达模拟

LiDARsim: Realistic LiDAR Simulation by Leveraging the Real World

论文作者

Manivasagam, Sivabalan, Wang, Shenlong, Wong, Kelvin, Zeng, Wenyuan, Sazanovich, Mikita, Tan, Shuhan, Yang, Bin, Ma, Wei-Chiu, Urtasun, Raquel

论文摘要

我们解决了对LiDar Point Clouds进行逼真的模拟的问题,这是大多数自动驾驶车辆偏爱的传感器。我们认为,通过利用真实数据,我们可以更现实地模拟复杂的世界,而不是采用通过CAD/程序模型构建的虚拟世界。为了实现这一目标,我们首先通过使用自动驾驶机队在几个城市驾驶几个城市来构建大型3D静态地图和3D动态物体的目录。然后,我们可以通过从目录中选择一个场景,并“虚拟地”放置自动驾驶车辆(SDV)以及一组来自现场中合理位置的目录中的动态对象来生成场景。为了产生逼真的模拟,我们开发了一种新颖的模拟器,该模拟器既捕获基于物理学的模拟和基于学习的模拟的力量。我们首先利用射线在3D场景上进行铸造,然后使用深层神经网络与基于物理的模拟产生偏差,从而产生逼真的LiDAR点云。我们展示了Lidarsim对长尾事件的感知算法测试和对安全至关重要方案的端到端闭环评估的有用性。

We tackle the problem of producing realistic simulations of LiDAR point clouds, the sensor of preference for most self-driving vehicles. We argue that, by leveraging real data, we can simulate the complex world more realistically compared to employing virtual worlds built from CAD/procedural models. Towards this goal, we first build a large catalog of 3D static maps and 3D dynamic objects by driving around several cities with our self-driving fleet. We can then generate scenarios by selecting a scene from our catalog and "virtually" placing the self-driving vehicle (SDV) and a set of dynamic objects from the catalog in plausible locations in the scene. To produce realistic simulations, we develop a novel simulator that captures both the power of physics-based and learning-based simulation. We first utilize ray casting over the 3D scene and then use a deep neural network to produce deviations from the physics-based simulation, producing realistic LiDAR point clouds. We showcase LiDARsim's usefulness for perception algorithms-testing on long-tail events and end-to-end closed-loop evaluation on safety-critical scenarios.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源