论文标题
模型类别的DWYER-KAN定位中的煤炭
Coalgebras in the Dwyer-Kan localization of a model category
论文作者
论文摘要
我们表明,弱单质量等效性引起了对称单体$ \ infty $ - 类别相对于对称单体模型类别的dwyer-kan定位。结果将在$ \ infty $ - 类别中引起山地的垂死信件。此外,它表明,希普利的质量等价的曲折曲折提高到稳定的dold-kan通信的$ \ infty $ - 类别的显式对称单相等性。我们研究了与单型单体类别相关的同型相干性膜。我们展示了这些结构桥不能严格化的例子。也就是说,他们的$ \ infty $类别不等于在通常的光谱和结缔组织离散$ r $模型的通常单型模型类别中,严格的山地的dwyer-kan本地化。
We show that weak monoidal Quillen equivalences induce equivalences of symmetric monoidal $\infty$-categories with respect to the Dwyer-Kan localization of the symmetric monoidal model categories. The result will induce a Dold-Kan correspondence of coalgebras in $\infty$-categories. Moreover, it shows that Shipley's zig-zag of Quillen equivalences lifts to an explicit symmetric monoidal equivalence of $\infty$-categories for the stable Dold-Kan correspondence. We study homotopy coherent coalgebras associated to a monoidal monoidal category. We show examples when these coalgebras cannot be rigidified. That is, their $\infty$-categories are not equivalent to the Dwyer-Kan localizations of strict coalgebras in the usual monoidal model categories of spectra and of connective discrete $R$-modules.