论文标题

在神经模型中的组成概括研究

A Study of Compositional Generalization in Neural Models

论文作者

Klinger, Tim, Adjodah, Dhaval, Marois, Vincent, Joseph, Josh, Riemer, Matthew, Pentland, Alex 'Sandy', Campbell, Murray

论文摘要

组成和关系学习是人类智力的标志,但它给神经模型带来了挑战。这种模型开发的一个困难是缺乏具有明确组成和关系任务结构的基准,可以系统地评估它们。在本文中,我们介绍了一个名为ConceptWorld的环境,该环境可以使用逻辑域特定的语言定义了从组成和关系概念中产生的图像。我们使用它来生成各种构图结构的图像:2x2正方形,pentominoes,序列,涉及这些对象的场景以及其他更复杂的概念。我们执行实验,以测试标准神经体系结构在与组成论证之间概括的能力,因为这些论点的组成深度增加并取代。我们比较了标准的神经网络,例如MLP,CNN和RESNET,以及在多级图像分类设置中的最新关系网络,包括WREN和PERENET。对于简单的问题,所有模型都可以很好地推广到封闭概念,但要与更长的组成链斗争。对于涉及替代性的更复杂的测试,即使在短链中,所有模型都在挣扎。在强调这些困难并为进一步实验的环境提供环境时,我们希望鼓励开发能够在组成,关系领域中有效概括的模型。

Compositional and relational learning is a hallmark of human intelligence, but one which presents challenges for neural models. One difficulty in the development of such models is the lack of benchmarks with clear compositional and relational task structure on which to systematically evaluate them. In this paper, we introduce an environment called ConceptWorld, which enables the generation of images from compositional and relational concepts, defined using a logical domain specific language. We use it to generate images for a variety of compositional structures: 2x2 squares, pentominoes, sequences, scenes involving these objects, and other more complex concepts. We perform experiments to test the ability of standard neural architectures to generalize on relations with compositional arguments as the compositional depth of those arguments increases and under substitution. We compare standard neural networks such as MLP, CNN and ResNet, as well as state-of-the-art relational networks including WReN and PrediNet in a multi-class image classification setting. For simple problems, all models generalize well to close concepts but struggle with longer compositional chains. For more complex tests involving substitutivity, all models struggle, even with short chains. In highlighting these difficulties and providing an environment for further experimentation, we hope to encourage the development of models which are able to generalize effectively in compositional, relational domains.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源