论文标题
关于渐近卡拉比空间的liouville定理
A Liouville theorem on asymptotically Calabi spaces
论文作者
论文摘要
在本文中,我们将研究具有非负RICCI曲率的完整和不完整空间的谐波功能,这些空间在无穷大时表现出不均匀的崩溃行为。主要结果指出,此类空间上的任何非恒定谐波函数都会产生确定的指数增长率,这明确取决于无穷大的几何数据。
In this paper, we will study harmonic functions on the complete and incomplete spaces with nonnegative Ricci curvature which exhibit inhomogeneous collapsing behaviors at infinity. The main result states that any nonconstant harmonic function on such spaces yields a definite exponential growth rate which depends explicitly on the geometric data at infinity.