论文标题

无平方顺序循环基团的模糊共同体

Equivariant cohomology for cyclic groups of square-free order

论文作者

Basu, Samik, Ghosh, Surojit

论文摘要

本文的主要目的是计算$ r(g)$ - 分级的共同体,$ g $ - 孔的组$ g = c_n $,其中$ n $是独特的素数的产物。我们为常量的Mackey Foundor $ \ USWINELLINE {Z} $计算这些组,并为Burnside Ring Mackey Foundor $ \ useverline {a} $计算这些组。除其他事项外,我们表明$ \ upessuess {h}^α_g(s^0)$主要由虚拟表示$α$的固定点维确定,除非$ \ useverline {a} $系数在固定点尺寸为$α$时具有许多zeros。在$ \下划线{z} $系数的情况下,还描述了同时组上的环结构。然后,该计算用于证明某些$ g $复合物的freeness结果。

The main objective of this paper is to compute $RO(G)$-graded cohomology of $G$-orbits for the group $G=C_n$, where $n$ is a product of distinct primes. We compute these groups for the constant Mackey functor $\underline{Z}$ and for the Burnside ring Mackey functor $\underline{A}$. Among other things, we show that the groups $\underline{H}^α_G(S^0)$ are mostly determined by the fixed point dimensions of the virtual representations $α$, except in the case of $\underline{A}$ coefficients when the fixed point dimensions of $α$ have many zeros. In the case of $\underline{Z}$ coefficients, the ring structure on the cohomology is also described. The calculations are then used to prove freeness results for certain $G$-complexes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源