论文标题
引力法拉第和光的旋转效果
Gravitational Faraday and Spin-Hall Effects of Light
论文作者
论文摘要
在非零角动量的空间时间中,引力法拉第及其光的双自旋壁效应出现。这些效果是在静态的,渐近平坦的时期研究的。在这里,我们在任意,非平稳,渐近平坦的空间时间中研究这些效果。这些效果是由于光极化与时空角动量之间的相互作用而产生的。由于这种相互作用,左手和右圆极化光的相位速度变得不同,从而导致重力法拉第效应。这种差异意味着这些成分的不同动力学,这些动力开始沿着不同的路径\ textemdash传播光的引力自旋壁效应。由于这种效果,重力场分裂了一个非极化光的多组分光束,并产生了极化的引力彩虹。组分分离是在远距离渐近学中观察到的累积效应。为了研究这种效果,我们构建了均匀的Eikonal扩展,并得出了描述这种效果的动力方程。为了分析动力学方程,我们以局部空间和时间分解形式表示它。相关光学度量中介绍的方程式的空间部分类似于在科里奥利力影响下在磁场中移动的带电粒子的动力学方程。
The gravitational Faraday and its dual spin-Hall effects of light arise in space-times of non-zero angular momentum. These effects were studied in stationary, asymptotically flat space-times. Here we study these effects in arbitrary, non-stationary, asymptotically flat space-times. These effects arise due to interaction between light polarisation and space-time angular momentum. As a result of such interaction, the phase velocity of left- and right-handed circularly polarised light becomes different, that results in the gravitational Faraday effect. This difference implies different dynamics of these components, that begin to propagate along different paths\textemdash the gravitational spin-Hall effect of light. Due to this effect, the gravitational field splits a multicomponent beam of unpolarized light and produces polarized gravitational rainbow. The component separation is an accumulative effect observed in long range asymptotics. To study this effect, we construct uniform eikonal expansion and derive dynamical equation describing this effect. To analyse the dynamical equation, we present it in the local space and time decomposition form. The spatial part of the equation presented in the related optical metric is analogous to the dynamical equation of a charged particle moving in magnetic field under influence of the Coriolis force.