论文标题

Cauchy-Szegö操作员,Quaternionic Siegel上半部空间,换向器,加权莫雷空间

Cauchy-Szegö operator, quaternionic Siegel upper half space, commutator, weighted Morrey space

论文作者

Fu, Zunwei, Gong, Ruming, Pozzi, Elodie, Wu, Qingyan

论文摘要

在Quaternionic Heisenberg Group $ \ Mathscr H^{N-1} $的设置中,我们表征了Cauchy-szegöuterator$ $ $ \ \ \ \ \ \ \ \ n-1的cauchy-szegöuter$ $ $ \ n-1的界限带有$ p \ in(1,\ infty)$,$κ\ in(0,1)$和$ w \ in A_p(\ Mathscr H^{n-1})。$更准确地说,我们证明$ [b,\ Mathcal c] $在$ l_w^{p,b,\ b,maths and $ b,nif if in $ l_w^nif if in $ b,nif}( $ b \ in {\ rm bmo}(\ mathscr h^{n-1})$。 $ [B,\ Mathcal C] $在$ l_w^{p,\,κ}(\ Mathscr H^{n-1})$上是紧凑的,并且仅当$ b \ in {\ rm vmo}(\ rm vmo}(\ mathscr h^{n-1}})中时,

In the setting of quaternionic Heisenberg group $\mathscr H^{n-1}$, we characterize the boundedness and compactness of commutator $[b,\mathcal C]$ for the Cauchy--Szegö operator $\mathcal C$ on the weighted Morrey space $L_w^{p,\,κ}(\mathscr H^{n-1})$ with $p\in(1, \infty)$, $κ\in(0, 1)$ and $w\in A_p(\mathscr H^{n-1}).$ More precisely, we prove that $[b,\mathcal C]$ is bounded on $L_w^{p,\,κ}(\mathscr H^{n-1})$ if and only if $b\in {\rm BMO}(\mathscr H^{n-1})$. And $[b,\mathcal C]$ is compact on $L_w^{p,\,κ}(\mathscr H^{n-1})$ if and only if $b\in {\rm VMO}(\mathscr H^{n-1})$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源