论文标题
Fermionic Chern绝缘子来自扭曲的光线和线性极化
Fermionic Chern insulator from twisted light with linear polarization
论文作者
论文摘要
时间反转对称性的破坏是拓扑带的关键要素。它可以散发地发生在具有磁性的材料中,也可以由外部磁场(例如量子厅系统中的磁场)或Floquet Chern绝缘子中的循环极化光场引起。除了极化外,光子还可以带有另一种自由度,轨道角动量,可以破坏时间反转对称性。在这封信中,我们提出了一个问题,该特性是否允许通过线性极化但扭曲的光束诱导拓扑带。为此,我们研究了与扭曲光场相互作用的蜂窝晶格上电子模型的石墨烯样模型。为了确定电子的拓扑行为,我们计算出其局部标记Chern数字,并监视间隙边缘状态的存在。我们的结果被证明与静态和驱动的Chern绝缘子的范式模型中发现的行为完全相似,并且实现了实验性的直接状态。这样,我们的工作就建立了一种新的机制来产生物质的费米子拓扑阶段,该阶段可以利用光涡流束的中心相奇异。
The breaking of time-reversal symmetry is a crucial ingredient to topological bands. It can occur intrisically in materials with magnetic order, or be induced by external fields, such as magnetic fields in quantum Hall systems, or circularly polarized light fields in Floquet Chern insulators. Apart from polarization, photons can carry another degree of freedom, orbital angular momentum, through which time-reversal symmetry can be broken. In this Letter, we pose the question whether this property allows for inducing topological bands via a linearly polarized but twisted light beam. To this end, we study a graphene-like model of electrons on a honeycomb lattice interacting with a twisted light field. To identify topological behavior of the electrons, we calculate their local markers of Chern number, and monitor the presence of in-gap edge states. Our results are shown to be fully analogous to the behavior found in paradigmatic models for static and driven Chern insulators, and realizing the state is experimentally straightforward. With this, our work establishes a new mechanism for generating Fermionic topological phases of matter that can harness the central phase singularity of an optical vortex beam.