论文标题

开放问题:上下文匪徒的模型选择

Open Problem: Model Selection for Contextual Bandits

论文作者

Foster, Dylan J., Krishnamurthy, Akshay, Luo, Haipeng

论文摘要

在统计学习中,用于模型选择的算法使学习者可以适应顺序中最佳假设类的复杂性。我们询问是否可以进行上下文匪徒学习的类似保证。

In statistical learning, algorithms for model selection allow the learner to adapt to the complexity of the best hypothesis class in a sequence. We ask whether similar guarantees are possible for contextual bandit learning.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源